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The microRNA miR-21 conditions the brain to protect 
against ischemic and traumatic injuries
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Ischemic and traumatic injuries to CNS remain leading causes of death and disability worldwide, 
despite decades of research into risk factors, therapies, and preventative measures. Recent 
studies showed that CNS injuries significantly alter the cerebral microRNAome that impact the 
secondary brain damage as well as plasticity and recovery. Many microRNA based therapies are 
currently in various clinical trials for different pathologic conditions indicating their therapeutic 
potential. In the present review, we discuss the role of miR-21 in acute CNS injuries which is 
currently thought to be a potent neuroprotective microRNA. We emphasize on the potential of 
miR-21 in promoting cell and tissue survival and preventing inflammation and apoptosis. We also 
discussed the role of miR-21 in conditioning the brain to promote ischemic tolerance. Finally, we 
discussed some of the challenges and difficulties to develop miR-21 as a neuroprotective therapy 
in humans. 
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Various classes of non-coding RNAs (ncRNAs) that
represent >98% of the transcriptional output in humans are 

considered as major controllers of transcription and translation 
(Cech and Steitz, 2014). The ncRNAs are diverse in size. They 
can be small like microRNAs (miRNAs) and piwi-interacting 
RNAs or medium-sized like small nucleolar RNAs and small 
Cajal body-specific RNAs or big like long noncoding RNAs 
(lncRNAs) and telomere-associated RNAs (Vemuganti, 2013). 
The ncRNAs are also very diverse in their function (Chandran 
et al., 2017). Ribosomal RNAs and transfer RNAs are the most 
studied ncRNAs that control translation. Whereas, miRNAs 
which are ~22 nucleotides long also control translation by 
binding to 6-8 nucleotide complementary seed sequences in 
the 3’ untranslated regions (3’-UTRs) of mRNAs (Lee et al., 
2002; Diederichs and Haber, 2007). The lncRNAs are known 
to modulate transcription by binding to other RNAs, chromatin 
modifying proteins, transcription factors and DNA (Kung et al., 
2013). 

Of the various classes of ncRNAs, miRNAs are the most 
studied. New miRNAs are continuously being discovered in all 
species and as of now 2,588 mature miRNAs were discovered 
in humans and 1,915 in mouse (http://www.mirbase.org/). 
The miRNAs are transcribed from specific genes by RNA 
polymerase II as several hundred base pairs of stem-loop 
structures called primary miRNAs (pri-miRNAs) (Lee et al., 
2002). A pri-miRNA will be cleaved in the nucleus by RNase 
Drosha in association with a protein called DiGeorge Syndrome 
Critical Region 8 (DGCR8) to release 1 to 6 precursor miRNAs 
(pre-miRNAs) (Lee et al., 2003). The pre-miRNAs are ~80 
nucleotide long hairpin structures that will be transported to 
cytosol by exportin-5 and cleaved by the RNase III Dicer to 
release mature miRNAs which are 18-24 nucleotides long 
(Diederichs and Haber, 2007). 

Recent studies have shown that miRNAs play crucial roles 
in vertebrate development and disease progression including 
heart failure, diabetes, cancer, and various brain and kidney 
pathologies (Kantharidis et al., 2011; Jansson and Lund, 2012; 
Jimenez-Mateos and Henshall, 2013; Olson, 2014). Several 
miRNA-based therapies also transitioned from preclinical 
studies to clinical trials. These include antimiR-122 for 
hepatitis C, antimiR-155 for cutaneous T-cell lymphoma, miR-
34 mimic for solid tumors, miR-16 mimic for mesothelioma, 
miR-29 mimic for scleroderma (Rupaimoole and Slack, 
2017). Preclinical studies showed that miR-122 is required 
for the replication of hepatitis C virus in liver (Baek et al., 
2014). Following this lead, miravirsen (miR-122 antagonist) 
is currently in a phase 2a clinical trial and the initial results 
showed decreased viral load of hepatitis C for up to 14 weeks 
after the last treatment (Janssen et al., 2013; van der Ree et 
al., 2014). MiR-34a is a tumor suppressor miRNA that is 
often downregulated or lost in solid tumors, including breast, 
colorectal, liver, lung, and prostate cancer (Saito et al., 2015; 
Adams et al., 2016). Transfection with a miR-34a mimic 
decreased invasion/migration in cultured human hepatocellular 
carcinoma cells (Li et al., 2009) and promoted apoptosis 
in multiple myeloma cell lines (Di Martino et al., 2012). 
Furthermore, mouse models of prostate cancer and diffuse B-cell 
lymphoma showed tumor regression and improved survivorship 
after intravenous treatment with miR-34a mimic (Liu et al., 
2011; Craig et al., 2012). Encouragingly, MRX34 (miR-34a 
mimic encapsulated in liposomes) recently met acceptable 
safety standards and showed potential antitumor activity in 
a phase I clinical trial (Beg et al., 2017). These clinical trials 
show the potential of miRNA-based therapies for cancers as 
well as other conditions like stroke with not many available 
drugs (Mozaffarian et al., 2016).

miRNAs modulate secondary neuronal damage following 
acute injuries to CNS
Traumatic and ischemic insults to the brain or spinal cord 
lead to significant neurological deficits that are exacerbated 
by secondary neuronal damage mediated by many synergistic 
pathophysiologic mechanisms that include excitotoxicity, 
inflammation, oxidative stress and apoptosis (Dreier, 2011; 
Dirnagl, 2012; Li et al., 2017). Recent studies showed that 
both ischemic and traumatic injuries to CNS are associated 
with altered cerebral miRNA expression profiles (Vijayan and 
Reddy, 2016; Di Pietro et al., 2017). Many preclinical studies 
also showed that secondary brain damage and neurological 
dysfunction can be curtailed and/or restorative mechanisms like 
neurogenesis and angiogenesis can be induced by manipulating 
specific miRNAs (Lou et al., 2012; Liu et al., 2013b; Zeng 
et al., 2014). In this section, we discuss the role of miRNAs 
after CNS injury, using stroke as a specific example. Role of 
miRNAs after traumatic brain injury (TBI) and spinal cord 
injury (SCI) is discussed at a later stage in the manuscript. 

Cerebral miRNA expression profiles were shown to be 
significantly altered as early as 30 minutes and as late as 3 
days of reperfusion following focal or global cerebral ischemia 
in rodents (Jeyaseelan et al., 2008; Dharap et al., 2009; Yuan 
et al., 2010). Pathway analysis showed that ischemia leads to 
upregulation of miRNAs that target pro-survival mRNAs and 
down-regulation of miRNAs that target pro-apoptotic and/or 
pro-inflammatory mRNAs (Jeyaseelan et al., 2008; Liu et al., 
2010a; Hunsberger et al., 2012). This leads to an unfavorable 
environment for cellular survival in the ischemic brain.

Many preclinical studies evaluated the significance of 
modulating specific miRNAs to decrease secondary brain 
damage and/or to induce plasticity/regeneration after stroke. 
The miR-145 was reported to be significantly upregulated in 
rat brain following transient focal ischemia, and treatment with 
antagomiR-145 was shown to decrease infarction (Dharap et al., 
2009). This neuroprotective effect was observed to be mediated 
by de-repression of miR-145 target superoxide dismutase-2 
(SOD2), which is an antioxidant protein that alleviates oxidative 
stress in the ischemic brain (Dharap et al., 2009). Many other 
miRNAs were also shown to modulate post-ischemic pathology. 
Notable examples are let-7f, miR-23a and miR-497. Improved 
neurological outcome and decreased infarct volume after 
focal ischemia was shown by inhibiting let-7f (targets insulin-
like growth factor 1), miR-23a (targets X-linked inhibitor of 
apoptosis) and miR-497 (targets pro-apoptotic Bcl2) (Yin et al., 
2010; Siegel et al., 2011; Selvamani et al., 2012).

Due to the redundancy of seed sequences and presence of 
binding sites for multiple miRNAs in the 3’UTRs, miRNAs 
act in concert to affect specific pathways. For example, several 
miRNAs modulate post-ischemic inflammation by targeting 
nuclear factor kappa B (NF-κB) pathway (Buchan et al., 2000; 
Xu et al., 2012). When rats were transfected with an adenoviral 
vector overexpressing miR-22, its target nuclear receptor 
coactivator 1 (NCOA1; a NF-κB coactivator) was repressed 
leading to neuroprotection after stroke (Yu et al., 2015). 
MyD88, a protein adaptor for receptors that mediate nuclear 
translocation of NF-κB is targeted by miR-203 (Yang et al., 
2015). Treatment with a miR-203 mimic was shown to silence 
NF-κB signaling resulting in decreased infarct volume, less 
edema and improved motor function recovery after stroke in 
mice (Yang et al., 2015). AntagomiR-181a administered either 
intravenous or intracerebroventricular was protective against 
ischemic injury in mice, likely due to degradation of GRP78, 
which is a NF-κB coactivator (Ouyang et al., 2012; Xu et al., 
2015).

miRNAs and ischemic tolerance in the brain
Hibernating animals survive without brain damage for months 
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with very low oxygen and glucose and this physiologic 
adaptation makes them resistant to stroke-induced brain 
damage (Zhou et al., 2001; Dave et al., 2006). Several studies 
have implicated miRNAs in the torpor response in different 
organs including liver, heart and skeletal muscle of hibernating 
animals including ground squirrels, bats and Dromiciops (Yuan 
et al., 2015; Hadj-Moussa et al., 2016; Wu et al., 2016). The 
brain of torpid hibernating brown bats showed altered miRNA 
expression when compared to non-torpid littermates (Biggar 
and Storey, 2014). Notably, they showed altered expression 
of 10 miRNAs (2 decreased and 8 increased) which target 
the translation of proteins that modulate focal adhesion and 
axon guidance (Biggar and Storey, 2014). We will discuss the 
therapeutic potential of miR-21 which is one of the upregulated 
miRNAs observed in this study. Ischemic tolerance can be 
induced in many species by a short duration ischemic insult 
which prepares the organs for a subsequent long duration 
ischemic event (Liu et al., 1992; Stetler et al., 2014; Varga et 
al., 2014). This preconditioning (PC) effect was shown to be 
associated with significantly altered miRNA expression profiles 
in rats, mice and gerbils. Following ischemic PC induced by a 
10 min middle cerebral artery occlusion (MCAO) in adult rats, 
several miRNAs that target neuroprotective pathways were 
shown to be downregulated while those that target cell death 
pathways were upregulated in cerebral cortex from 6h to 3 days 
(Dharap and Vemuganti, 2010). Interestingly, miR-21 was the 
miRNA that showed a consistent induction (from 6h to 3 days) 
and also the highest fold increase in rat brain after ischemic PC 
(Dharap and Vemuganti, 2010). A study of in vitro ischemic PC 
using oxygen-glucose deprivation (OGD) in rat hippocampal 
neurons also showed miR-21 upregulation at 1 day of re-

oxygenation (Keasey et al., 2016). Altered miRNA expression 
profiles were also shown in the mouse brain from 3h to 3 days 
following ischemic PC induced by a short duration MCAO (Lee 
et al., 2010; Lusardi et al., 2010). Suppression of miR-132 and 
subsequent induction of the transcriptional repressor methyl 
CpG binding protein 2 (MeCP2) were implicated as the major 
mediator of PC in mouse brain (Lusardi et al., 2010). These 
authors showed that MeCP2 knockout mice will not develop 
ischemic tolerance when subjected to PC.PC induced by a short 
duration global ischemia in gerbils altered the expression of 
several miRNAs for up to 6 months, although the consequence 
of this was not evaluated further (Sun et al., 2015). Whereas, 
Lee et al. (2010) attributed the PC-induced ischemic tolerance 
to upregulation of miR-200 leading to degradation of its target 
prolyl hydroxylase 2, which is a part of the pathway that 
modulates hypoxia-inducible factor 1α (Ratcliffe et al., 2017). 

miR-21 as a therapeutic candidate for CNS injury
The previous sections indicated that stroke alters many miRNAs 
and several of them can serve as biomarkers to identify a 
disease state as well as serve as therapeutic targets to protect 
the brain. Of these, miR-21, one of the first miRNAs isolated 
from mammalian tissue, stands out as a strong candidate for 
translation to human stroke therapy (Lagos-Quintana et al., 
2002; Krichevsky and Gabriely, 2009; Kumarswamy et al., 
2011). Putative functions of miR-21 have been investigated in 
many pathologies including cardiac ischemia, hepatic fibrosis 
and different types of cancers (Pan et al., 2010; Zhang et al., 
2013b; Gu et al., 2015). Additionally, several predicted gene 
targets of miR-21 have been validated (Cheng et al., 2010; 
Buscaglia and Li, 2011). Importantly, miR-21 represses the 

Figure 1: miR-21 regulates apoptosis 
Fas ligand (FasL), programmed cell death protein 4 (PDCD4), and phosphatase and tensin homolog (PTEN) are the best-characterized targets 
of miR-21. These proteins synergistically promote apoptosis. FasL is either membrane-bound or soluble and physically binds to the Fas death 
receptor (FasR) to initiate a caspase cleavage cascade resulting in apoptosis. PTEN is a tumor suppressor and a negative regulator of PI3K 
that phosphorylates PIP2 to form PIP3 that activates Akt pathway leading to cell death. As such, prevention of PTEN by miR-21 can lead to 
better cell survival following conditions like stroke and TBI. PI3K and Akt also modulate caspase-9 cleavage and hence, PTEN inhibition leads 
to prevention of apoptosis.  Furthermore, PI3K/Akt activates mammalian target of rapamycin (mTOR) that inhibits PDCD4 activity. PDCD4 
causes a protein expression bottleneck by inhibiting eukaryotic initiation factor 4a (eIF4a) and the transcription factor activator protein 1 (AP-
1). Preventing eIF4a activity causes endoplasmic reticulum stress and inhibiting AP-1 prevents expression of beneficial genes such as vascular 
endothelial growth factor (VEGF). As inhibition of FasL, PTEN or PDCD4 together is a powerful strategy to prevent apoptosis and hence miR-21 
is an attractive therapeutic to protect the post-injury brain. Tipped arrows indicate activation and blunted arrows indicate inhibition. 



REVIEW ARTICLE

Conditioning Medicine 2017 | www.conditionmed.org

Conditioning Medicine | 2017, 1(1):35-46

38

translation of proteins that promote apoptosis and inflammation 
and hence helps the post-ischemic outcome (Xu et al., 2014).  

Anti-apoptotic and anti-inflammatory functions of miR-21 
The best studied targets of miR-21 are programmed cell 
death 4 (PDCD4), Fas ligand (FasL) and phosphatase and 
tensin homologue (PTEN) (Fig. 1). All of these are strongly 
implicated in promoting apoptosis and inflammation (Lu et 
al., 2008; Sayed et al., 2010; Sheedy et al., 2010; Das et al., 
2014; Choi et al., 2015; Wu et al., 2015; Yang et al., 2016a). 
The dual role of these proteins emphasizes that apoptosis 
and inflammation potentiate each other in a feedback loop. 
PDCD4 promotes apoptosis by binding to the translational 
initiation factor eIF4a and arresting translation of activator 
protein 1 (AP-1) (Yang et al., 2001; Loh et al., 2009). FasL is 
expressed on the surface of immune cells and binds to Fas death 
receptor to promote apoptosis via caspase cleavage and/or p53 
activation (Benchimol, 2001; Broughton et al., 2009). PTEN 
dephosphorylates phosphatidylinositol 1,4,5-trisphosphate 
(PIP3) to form phosphatidylinositol 4,5-bisphosphate (PIP2), 
preventing PIP3-mediated activation of the kinase Akt, resulting 
in caspase cleavage (Tu et al., 2013; Yang et al., 2014). Loss 
of PDCD4, FasL and PTEN contributes to increased survival 
of cancer cells (Chen et al., 2003; Viard-Leveugle et al., 2003; 
Peng et al., 2016). Many studies implicated miR-21 as an 
oncomiR since its enrichment in primary tumors negatively 
correlates with the expression of these proteins (Chen et al., 
2008; Li et al., 2013a; Shang et al., 2015). However, it is 
key to bear in mind that this anti-apoptotic function which is 
deleterious for cancer is beneficial in conditions of acute brain 
injury by promoting cell survival.  

The anti- inflammatory effect  of  miR-21 has been 
demonstrated in models of acute inflammation, peritonitis, 
cardiovascular disease and kidney injury (Feng et al., 2014; 
Toldo et al., 2014; Jia et al., 2015; Barnett et al., 2016; Zhang 
and Shu, 2016). The miR-21 target PDCD4 in particular 
has been shown to activate NF-κB transcription leading to 
inhibition of the anti-inflammatory cytokine IL-10 (Yang et 
al., 2001; Young et al., 2010). PTEN/Akt signaling is required 
for site-directed immune cell migration due to control of its 
downstream factors mammalian target of rapamycin (mTOR) 
and FoxO1, which modulate cell growth and metabolism (Li 
et al., 2000; Hedrick et al., 2012; Zhang et al., 2013a; Xie et 
al., 2014). Additionally, PTEN knockout mice are resistant to 
pneumonia infection (Schabbauer et al., 2010). The membrane 
bound isoform of FasL promotes neutrophil recruitment acting 
as a chemoattractant for these cells (Hohlbaum et al., 2000; 
Dupont and Warrens, 2007).

In addition to FasL, PDCD4, and PTEN, miR-21 targets 
many mRNAs that encode pathologically relevant pro-
inflammatory proteins. The transcription factor signal transducer 
and activator of transcription 3 (STAT3) is a validated target of 
miR-21 (Wang et al., 2015). Once activated by transmembrane 
receptor kinases, STAT-3 translocate into the nucleus and 
transcribes many genes including SOD2, Bcl family and 
intracellular adhesion molecule 1 (Dauer et al., 2005; Yu et 
al., 2009). All these are known to modulate oxidative stress, 
inflammation and apoptosis. Interestingly, colon and skin 
cancer cells implicate miR-21/PTEN/Akt axis and STAT3 in a 
feedback regulatory loop such that STAT3 knockdown prevents 
miR-21 expression, and overexpression of miR-21 increases 
IL-6 levels which in turn activates STAT3 (Iliopoulos et al., 
2010; Lu et al., 2015).

Clinical studies implicated that miR-21 silencing could 
be therapeutically beneficial in conditions like chronic 
inflammatory diseases, diabetic nephropathy and renal fibrosis 
(Zhong et al., 2011; Wang et al., 2014; McClelland et al., 2015). 
Increased levels of miR-21 in the blood of patients with chronic 

kidney fibrosis suggest that miR-21 might be a robust biomarker 
of this disease (Glowacki et al., 2013). MiR-21 expression 
was also shown to be elevated significantly in blood samples 
from patients suffering with chronic cardiopulmonary diseases, 
cardiac fibrosis, idiopathic pulmonary fibrosis and coronary 
heart disease (Liu et al., 2010b; Li et al., 2015; Lorenzen et al., 
2015). A seemingly contradictory finding attributed to miR-21 
is silencing its target SMAD7, a signaling molecule that binds 
to the intracellular region of the transforming growth factor 
beta receptor (TGFβR), and thus prevents phosphorylation of 
SMAD2 and SMAD3 (Wang et al., 2014; Choi et al., 2016). 
When SMAD2/3 are phosphorylated, they translocate into 
nucleus to promote transcription of extracellular matrix proteins 
such as collagen I and fibronectin (Meng et al., 2015b). The 
role of miR-21 in controlling SMAD7 was thought to be 
important in various conditions like hepatic fibrosis, atrial 
fibrosis, pulmonary fibrosis and carcinoma-associated fibroblast 
formation (Li et al., 2013b; He et al., 2016; Kwon et al., 2016; 
Yang et al., 2016b). 

Role of miR-21 in stem cell integrity and angiogenesis 
Embryonic and new born mouse brains were shown to be 
enriched with miR-21 that correlates with SOX2 levels till 
postnatal day 7 (Polajeva et al., 2012). Furthermore, miR-
21 and SOX2 levels showed similar pattern of induction in 
mouse brain tumor samples, and treatment with antagomiR-21 
significantly reduced SOX2 levels in both mouse and human 
glioma cells (Polajeva et al., 2012). As SOX2 is a transcription 
factor required for neural stem cell pluripotency, this study 
indicates the role of miR-21 in stem cell pluripotency, brain 
development and glioma expansion. A recent study showed 
increased proliferation of neural progenitor cells cultured in 
hypoxic conditions that can be attributed to activation of the 
miR-21/PTEN/Akt axis (Chen et al., 2017).

Increased levels of miR-21 are associated with better 
integrity of cardiac stem cells (CSC) and their proliferation via 
its target PTEN. Rat CSCs transfected with miR-21 mimic were 
robustly protected against lethal H2O2 exposure which was 
associated with decreased PTEN levels resulting in increased 
Bcl:Bax ratio, decreased cleaved caspase-3 levels and fewer 
apoptotic cells (Hori and Nishida, 2009; Deng et al., 2016). 
CSCs from both mice and rats showed increased proliferation 
and trans-well migration after transfection with miR-21 mimic 
(Zhou et al., 2016; Shi et al., 2017). Improved proliferation/
migration of stem cells was mimicked and attenuated 
respectively, by small-molecule inhibitors of PTEN and PI3K, 
suggesting that PTEN degradation is a key mechanism of miR-
21-mediated proliferation/migration of CSCs (Shi et al., 2017).

Exosomes from stem cell are known to contain high levels
of pro-survival proteins, RNAs and intact mitochondria (Lai 
et al., 2011; Phinney et al., 2015). Exosomes derived from 
human endometrial mesenchymal stem cells and cardiomyocyte 
progenitor cells were found to be enriched with miR-21. Rat 
cardiomyocytes cultured in exosome conditioned medium were 
resistant to oxidative stress-mediated apoptosis in vitro and this 
protection was attributed to uptake of miR-21 and degradation 
of its target PDCD4 (Xiao et al., 2016). A subsequent study 
showed that exosome-conditioned rat cardiomyocytes exhibited 
improved engraftment and survival after transplantation into 
the ischemic rat heart, and this improvement was attributed to 
prevention of PTEN translation by miR-21 (Wang et al., 2017). 
Together, these studies support a pro-recovery role of miR-21 
after an injury to promote plasticity after stroke (Barkho and 
Zhao, 2011; Goritz and Frisen, 2012).

Role of miR-21 in stroke
Preclinical models show a highly phasic pattern of miR-21 
expression after ischemic insults. Rat cortical neurons subjected 
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to OGD showed induction of miR-21 by 1 day (Ziu et al., 
2011). However, in microglia subjected to hypoxia, miR-21 was 
downregulated leading to induction of its target Fas ligand that 
was thought to promote apoptosis (Zhang et al., 2012). Adult 
rats subjected to global ischemia or embolic focal ischemia also 
showed induction of miR-21 at 1 day of reperfusion (Deng et 
al., 2013; Liu et al., 2013a; Li et al., 2016b). In the rat MCAO 
model of focal ischemia, miR-21 upregulated significantly in 
the penumbra from 2 to 7 days post reperfusion (Buller et al., 
2010). These studies indicate that miR-21 might be a player in 
promoting neuroprotection as well as plasticity and recovery 
after stroke.  

MiR-21 was shown to inhibit apoptosis by preventing 
FasL protein expression after OGD (Buller et al., 2010). In 
cultured rat cortical neurons subjected to OGD, FasL levels and 
apoptosis were curtailed by transfection with miR-21 mimic and 
induced by transfection with antagomiR-21 (Buller et al., 2010). 
A subsequent study showed that when rat hippocampal neurons 
were cultured in conditioned medium from rat microglia 
subject to OGD, there was an induction of FasL and increased 
apoptosis (Zhang et al., 2012). Furthermore, transfecting the 
microglia with a miR-21 mimic before the exposure to OGD 
attenuated FasL expression and prevented neuronal death in 
hippocampal neurons cultured with the conditioned medium 
(Zhang et al., 2012). Peripheral blood samples from ischemic 
and hemorrhagic stroke patients collected at an acute stage (12 
to 24h after stroke) showed significantly lower miR-21 levels 
compared to healthy age-matched controls (Zhou and Zhang, 
2014; Wang et al., 2016). Interestingly, elevated miR-21 in the 
peripheral blood correlated with increased incidence of stroke-
associated infections and decreased serum interferon gamma 
(IFNγ) levels (Lin et al., 2016). This is attributes a putative anti-
inflammatory effect to miR-21. 

Role of miR-21 in traumatic brain injury
Neuronal death and neurological dysfunction after TBI is 
also synergistically mediated by apoptosis, inflammation 
and oxidative stress similar to stroke (Masel and DeWitt, 
2010). However, there are certain key differences between 
TBI and stroke pathologies. For example, post-TBI lesions 
exhibit significant diffuse axonal injury and increased necrosis 
unlike post-stroke infarcts (Vieira et al., 2016). Furthermore, 
TBI is highly associated with hemorrhages that contribute 
to the secondary brain damage (Nolan, 2005). Despite these 
differences, preclinical studies show similar patterns of miR-
21 expression in TBI and stroke. In rats, fluid percussion injury 
(FPI) upregulated miR-21 expression in the contused cortex 
at 1 to 7 days after the injury (Lei et al., 2009; Ge et al., 2014; 
Ge et al., 2015). Whereas, controlled cortical impact (CCI) 
injury in rats was shown to down-regulate miR-21 levels at 
3h with subsequent upregulation from 1 to 3 days after the 
injury (Redell et al., 2011). Mice subjected to CCI injury also 
showed upregulation of miR-21 from 6h to 7 days post injury 
(Sandhir et al., 2014; Meissner et al., 2016). The miR-21 was 
reported to be enriched in the extracellular vesicles isolated 
from the contused hemisphere of mice at 7 days after CCI 
injury (Harrison et al., 2016). Expression patterns of miR-21 
are different in aged and young mice, such that miR-21 levels 
returned to sham levels by 1 day after injury in aged mice, 
while they stayed elevated till 7 days post injury in young 
mice (Sandhir et al., 2014). Compared to young mice, aged 
mice showed a higher degree of secondary brain damage and 
increased expression of the miR-21 target proteins PTEN, 
PDCD4 and tissue inhibitor of metalloproteinase 3 (TIMP3) 
(Sandhir et al., 2014). Intracerebroventricular injection 
of miR-21 mimic to rats after FPI was shown to suppress 
PTEN expression with corresponding increased levels of 
p-Akt, decreased TUNEL staining, lower Bcl2/Bax ratio and

decreased cleaved caspase-3 levels that led to reduced lesion 
size and curtailed edema and improved behavioral outcome 
(Ge et al., 2014; Ge et al., 2015). Thus, miR-21 was shown 
to inhibit apoptosis by promoting the degradation of PTEN. 
The miR-21-PTEN-Akt axis was also explored in cultured rat 
cortical neurons subjected to scratch injury (Morrison et al., 
2011). Neurons transfected with miR-21 mimic 1 day before 
scratch injury showed PTEN degradation, increased Bcl2/
Bax ratio, decreased TUNEL staining and decreased levels of 
cleaved caspase-3 and 9 similar to that observed in the in vivo 
TBI models (Han et al., 2014). Apoptosis after TBI may be 
modulated by PDCD4, which inversely correlated with mir-21 
expression in CCI-contused rats and mice (Redell et al., 2011; 
Sandhir et al., 2014). All these studies indicate that induction of 
miR-21 is a neuroprotective adaptation to protect the brain after 
TBI.

After TBI, miR-21 seems to be playing a neurorestorative 
role as well. At 3 days post-FPI, rats treated with miR-21 
mimic showed induction of claudin-5 and occludin in the injury 
lesion and boundary (Ge et al., 2015). At 7 days post-FPI, miR-
21 treated rats showed increased microvascular density and 
vascular endothelial growth factor (VEGF) expression (Ge et 
al., 2014). At both 3 and 7 days post-FPI, edema was decreased, 
and expression of Ang1 and Tie2 was increased compared to 
controls; however the mechanism of miR-21-mediated effects 
on Ang1/Tie2 axis was not evaluated in detail (Ge et al., 2014; 
Ge et al., 2015). These studies in general indicate that miR-21 
promotes blood-brain barrier (BBB) integrity and angiogenesis 
after TBI. Many targets of miR-21 are pro-inflammatory and 
pro-apoptotic. When rat brain microvascular endothelial cells 
transfected with miR-21 mimic were subjected to scratch 
injury, expression of the pro-inflammatory TNFα, IL-6 and 
NF-κB decreased and the expression of the anti-inflammatory 
IL-10 increased (Ge et al., 2016). Furthermore, the scratch 
injured cells transfected with miR-21 mimic showed decreased 
apoptosis (as measured by Annexin V and cleaved caspase-9 
staining) and elevated levels of claudin-5, occludin, Ang1, and 
Tie2 that might promote endothelial cell function (Ge et al., 
2016).

Role of miR-21 in spinal cord injury
SCI causes extensive sensory and motor deficits that are 
synergistically mediated by several secondary injury 
mechanisms that include excitotoxicity, inflammation, 
oxidative stress and apoptosis (Silva et al., 2014). Despite these 
mechanistic similarities, SCI pathology is distinct from stroke 
pathology and poses its own set of challenges (Oyinbo, 2011). 
The average SCI patient is younger than the average stroke 
patient and hence the post-injury period of survival is longer. 
SCI has an extended chronic phase that is characterized by the 
formation of a perilesional glial scar composed of astrocytes 
and extracellular matrix that prevents axonal growth (Fawcett 
and Asher, 1999). 

Rats subjected to SCI showed increased miR-21 expression 
between 3 and 35 days post-injury (Liu et al., 2009; Bhalala 
et al., 2012; Yunta et al., 2012; Hu et al., 2013). A single 
bolus of intravenous administration of the omega-3 fatty 
acid docosahexaenoic acid (DHA) that improves learning, 
memory, and motor function recovery after SCI (Lim et al., 
2013) increased miR-21 levels leading to decreased levels 
of its target PTEN (Liu et al., 2015). Furthermore, neuronal 
cultures treated with DHA showed increased neurite growth 
which was attenuated by antagomiR-21 treatment (Liu et al., 
2015). Intrathecal administration of antagomiR-21 after SCI led 
to increased expression of FasL and PTEN, bigger lesion size 
and less recovery of the hind limb function (Hu et al., 2013). A 
recent study showed that in rats subjected to weight drop SCI, 
treatment with antagomiR-21 increased TIMP3 expression 
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and decreased vascular density, whereas treatment with either 
miR-21 mimic or TIMP3 siRNA induced MMP2 and MMP9 
expression and improved capillary network formation (Hu et 
al., 2016). 

Though the mechanism is unclear, miR-21 was shown to 
play a role in ameliorating astroglial hypertrophy. Lentivirus-
mediated overexpression of miR-21 decreased GFAP expression 
and cell size in primary mouse astrocytes (Sahni et al., 2010). 
Transgenic mice that overexpress miR-21 showed decreased 
GFAP density and thinner astrocytic processes at 14 and 35 
days after SCI compared to wild-type controls (Bhalala et al., 
2012). This group further demonstrated that transgenic mice that 
express a miR-21 sponge show persistent astrocytic activation 
and hypertrophy up to 35 days post-SCI. Mice expressing the 
miR-21 sponge showed increased axon density across the SCI 
lesion, which is contradictory to the evidence presented above 
that miR-21 antagonism is associated with poor outcome after 
SCI (Hu et al., 2013). The authors justified this discrepancy by 
hypothesizing that the activated, hypertrophic astrocytes in the 
miR-21 sponge expressing mice prevented formation of the 
glial scar (Bhalala et al., 2012). Overall, these studies indicate 
that overexpression of miR-21 at an acute stage after SCI is 
potentially therapeutic, but inhibition of miR-21 during the 
chronic phase after SCI might promote recovery. 

Role of miR-21 in other CNS pathologies
MiR-21 is also implicated in several non-ischemic, non-
traumatic CNS pathologies. It was shown to be upregulated 
in the cerebral cortex of autism patients (Mor et al., 2015), in 
the CSF of patients with viral CNS infection (Goswami et al., 
2017) and in peripheral blood mononuclear cells from multiple 
sclerosis patients (Fenoglio et al., 2011). Studies showed that 
exposure of murine cortical neurospheres to high doses of 
alcohol repress miR-21 (Sathyan et al., 2007; Balaraman et al., 
2012). However, the functional significance of miR-21 in all 
these conditions is not known.

Role of miR-21 in epilepsy, HIV/SIV and Parkinson’s 
disease (PD) was evaluated in detail. In the rat hippocampus, 
miR-21 was observed to be significantly down-regulated at 
1 day, but upregulated from 2 to 30 days following lithium 
pilocarpine (LiP)-induced epilepsy (Hu et al., 2011; Risbud 
et al., 2011; Meng et al., 2015a; Roncon et al., 2015; Chak et 
al., 2016). In both juvenile and adult epileptic patients, miR-
21 was reported to be upregulated in the hippocampus (Peng 
et al., 2013; Roncon et al., 2015). These findings corroborate 
earlier studies which show that suppression of hippocampal 
and forebrain neurotrophin 3 (NT3; a miR-21 target gene) is 
associated with development of status epilepticus in LiP-treated 
rats (Schmidt-Kastner and Olson, 1995; Mudo et al., 1996). In 
the brains of SIV-infected rhesus monkeys and HIV-infected 
humans, miR-21 was reported to be upregulated in neurons, and 
trafficked to microglia via extracellular vesicles (Yelamanchili 
et al., 2015). This neuronal upregulation of miR-21 inversely 
correlated with levels of its target monocyte enhancement factor 
2c (MEF2c) (Yelamanchili et al., 2010) which is a transcription 
factor associated with potassium channel signaling required 
for neuronal survival and learning (Barbosa et al., 2008). In 
the context of HIV/SIV, miR-21-mediated decrease in MEF2c 
resulted in outward potassium neuronal currents, which is a 
sign of neuronal commitment to apoptosis (Yelamanchili et al., 
2010). Cerebral mir-21 levels were observed to be markedly 
upregulated in the MPTP-induced PD in mice (Su et al., 2016). 
Mir-21 was shown to target lysosome-associated membrane 
protein 2 which increases the degradation of α-synuclein by 
promoting chaperone-mediated autophagy and thus might 
prevent the PD-like pathology (Xilouri et al., 2013; Su et al., 
2016).

Steps to therapeutic translation
The evidence presented previously suggests that miR-21 is 
already an ideal candidate for translation to the clinic. However, 
most of these studies were conducted with either cell cultures 
or rodent models of stroke, TBI and SCI. For therapeutic 
clinical translation of miR-21, further robust and large-scale 
preclinical studies are needed. For example, the post-stroke 
therapies need to be tested following the recommendations 
of the Stroke Treatment Academic Industry Roundtable 
(STAIR) criteria that include testing both sexes, different 
age groups, minimal efficacious dose with no toxicity, half-
life, different routes of administration, window of therapeutic 
opportunity, longer-term multiple functional outcomes, 
extensive physiological monitoring, multiple disease models 
and importantly randomization and blinding of the studies (Saver 
et al., 2009; Savitz et al., 2011). It is also important to develop 
a proper tissue-specific delivery strategy without the toxicity 
of a transfection agent and preventing the RNase-mediated 
degradation are important for translating a miRNA therapy to 
humans. Studies are underway to test encapsulating the miRNA 
in liposomes and attaching a targeting moiety like in dendrimers 
to increase tissue-specific delivery and to chemically modify 
a miRNA by locked nucleic acid or phosphorothioate 
modifications to resist the RNases (Rupaimoole and Slack, 
2017). Given the pro-survival function of miR-21, the most 
pressing concern is to confirm that patients don’t develop 
tumors with miR-21 therapy (Karsy et al., 2012; Pfeffer et al., 
2015; Li et al., 2016a; Li et al., 2016c). The path to therapeutic 
translation is clear, but needs more studies. 

Summary and Conclusions
All the above studies suggest that miR-21 is a promising 
candidate for therapeutic amelioration of secondary neuronal 
injury following acute and chronic insults to CNS. Importantly, 
increasing miR-21 levels might precondition the CNS to induce 
tolerance in case of an insult. The pro-survival effects of miR-
21 in the CNS are typically attributed to inhibition of pro-
apoptotic pathways controlled by the miR-21 targets PDCD4, 
PTEN, RECK, and FasL. Dozens of other pro-apoptotic targets 
of miR-21 have been verified in non-CNS paradigms (Buscaglia 
and Li, 2011). 

Preventing apoptosis often results in decreased inflammatory 
burden by decreasing the amount of injured tissue requiring 
repair or clearance. However, miR-21 may directly affect 
inflammation via its gene targets PELI1, IL-12a, PTEN, FasL, 
and PDCD4, which regulate the NF-κB pathway. Further 
evidence for a directly anti-inflammatory role of miR-21 comes 
from investigations of peritonitis and LPS exposure, in which 
groups with elevated miR-21 levels survived and recovered 
better than the control groups (Feng et al., 2014; Barnett et al., 
2016). 

Encouragingly, the benefits of miR-21 are not limited to 
preventing damage, but are also tied to its ability to promote 
cell survival after injury. Neural and cardiac stem cells treated 
with miR-21 (via either transfection or culturing with miR-
21 enriched exosomes) subjected to stressful stimuli such as 
hypoxia or H2O2 exposure showed decreased apoptosis and 
improvements in proliferation and migration, which are often 
considered as signs of stem cell integrity (Chen et al., 2017; Shi 
et al., 2017). MiR-21 was also shown to promote angiogenic 
recovery after SCI via its target TIMP3, which inhibits MMP2 
and MMP9, and was shown to block VEGF binding to its 
receptor (Qi et al., 2003; Hu et al., 2016). 

In conclusion, these studies implicate miR-21 in improving 
post-injurious outcomes in both preventative and therapeutic 
contexts.  Overall ,  miR-21 shows great promise as a 
neuroprotective agent against stroke and possibly other acute 
CNS injuries.
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